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Assume: a helical snake inserted in AGS section 1-20 with Parameten: 
Total length 2.1 m, field strength 3.0 Tesla. 
First section: 44.5 cm, twist 180 degrees 
Second section: 1.21 m, twist 245 degrees 
Third section: 44.5 cm, twist 180 degrees. 

Assume (for the sake of manageable analytic computation): abrupt transitions from zero 
field to full field at ends of helix, abrupt change of pitch between end and center 
sections. 
At injection energy (Ggamma = 4.7) the snake strength is 34.9%, and the trajectory is as 
shown 
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Because of Maxwell's equations, a helical field automatically include nonlinearities, 
local field gradients and solenoidal fields, varying over the trajectory. Averaging these 
over the trajectory, we can compute the effective transfer matrix for the helix, which 
unfortunately is nothing like that for a drift space of the same length. For the whole 10- 
foot (3.048 m) straight section including the snake, this matrix comes out to be 
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0.664572 2.646738 -0.03787 -0.1 274 
-0.21013 0.664572 0.007435 -0.03248 
0.032485 0.1 27396 0.845606 2.809608 
-0.00743 0.037874 -0.10064 0.845606 

which includes significant coupling terms (upper right and lower left comers). 
The fields on the trajectory (again calculated with the hard-edge approximations) are 

By superimposing a suitable solenoidal field we can eliminate the coupling terms. With 
a solenoidal field of 0.3371 T the fields are as shown below: 

the snake is now 27.7% of a full snake, and . the matrix is altered to 
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0.66671 8 2.651499 -7.21 E-06 -2.9E-05 
-0.2095 0.66671 8 1.59E-06 -9.05E-06 

9.05E-06 2.92E-05 0.848034 2.814629 
-1.59E-06 7.21 E-06 -0.09978 0.848034 

i.e. the coupling is eliminated. But the matrix is a long way from a simple drift matrix; 
this causes a huge mismatch of the orbit stability. With the tunes of the plain AGS set at 
(8.1J3.75) the tunes come out as (8.29,8.88), i.e. a tune change of around 0.2 units, and 
the orbit functions are as shown: 

Injection field, 3T helix and .34 T solenoid, unmatched 
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(Here the snake is located in the last superperiod, i.e. at s = 790 m). Recall that in the 
bare AGS the maximum beta functions are about 22 m, and the dispersion function 1.8 
m.1 

Using the MAD program we find that with quadrupoles in sections 117,119, J1, J3 (the 
sections nearest to the snake at 120) we can match the beta functions perfectly (except, 
of course, in the section containing the snake). 
The quadrupoles are assumed to have effective length of 35 cm, and their strengths are 
calculated as. 

I17 = 1.82 T/m, 
I19= 1.63T/m, 
J l  = -0.92 T/m, 
J3 = 1.92 T/m. 
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These are quite modest, and should be easy to put in. With these quadrupoles the orbit 
functions become: 

lnjectian field, 3T hslix,0.34 T salenolid, matching quads 
Helical snake and compensating quads 
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Note that the beta functions are perfectly matched, but the dispersion function is not (no 
attempt was made to match it - undoubtedly that could be done too). The tunes are 8.65 
and 8.97; this could easily be adjusted. 

At higher energies the effect of the snake on the orbit is weaker. At Ggamma = 8.9 (the 
0 + nu resonance) the unmatched beta functions have a maximum of 39 meters as 
against 90 at injection, and the solenoid needed to counteract coupling is down to 0.17 
Tesla. The compensating quadrupoles are, for one set of tunes, 

I17 = 3.46 T/m, 
I19= -0.65 T/m, 
J1= 2.12 T/m, 
53 = 0.65 T/m. 

Finally, at high energy no compensation is needed. In all cases the tunes in my 
examples are about 8.65 and 8.95. Another cost of the compensating quads is that they 
break the 12-fold periodicity of the AGS lattice; therefore in addition to the intrinsic 
resonances at G y = 12k L- v there are now resonances at 

G y = k f v  
with all integers k. Thus with the corrections at injection energy the spectrum of 
resonances is now 
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Thus new resonances have now appeared. But the ones near injection energy are weak 
enough so that, with the partial snake, they will not cause any trouble. 

At higher energies the compensating quadrupoles are relatively weaker, and the 
resonances they cause are correspondingly weaker. With the compensating quadrupoles 
for G y = 8.9 the resonance spectrum is 

0.1 
Resonances with helix compensated at energy Ggamma-nut0 

z 

G p a n m a  

and the symmetry-breaking resonances are weak compared to the main O+v resonance, 
so clearly the will not &ect the partial snake’s ability to cope with resonances. 
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